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Effect of shear on phase-ordering dynamics with order-parameter-dependent mobility:
The large-n limit

N. P. Rapapa
Department of Physics and Astronomy, The University, Manchester M13 9PL, United Kingdom

~Received 28 June 1999!

The effect of shear on the ordering kinetics of a conserved order-parameter system withO(n) symmetry and

order-parameter-dependent mobilityG(fW )}(12fW 2/n)a is studied analytically within the large-n limit. In the
late stage, the structure factor becomes anisotropic and exhibits multiscaling behavior with characteristic length
scales (t2a15/ln t)1/2(a12) in the flow direction and (t/ ln t)1/2(a12) in directions perpendicular to the flow. As in
the a50 case, the structure factor in the shear-flow plane has two parallel ridges.

PACS number~s!: 64.60.Cn, 82.20.Mj, 05.70.Ln
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I. INTRODUCTION

The dynamics of the ordered phases when a system
quenched from the high-temperature phase into the l
temperature region of two or more ordered phases has
of intense interest@1#. It is now well established that in th
late stage, both the equal time pair correlation funct
C(r ,t) and the structure factorS(k,t) obtained by the Fou-
rier transform ofC(r ,t) obey standard scaling. By standa
scaling it is meant thatC(r ,t) andS(k,t) can be written as
f (r /L) andLdg(kL), respectively, wheref (r /L) andg(kL)
are the scaling functions andL(t) is the characteristic length
scale in the system. For scaling to hold,L(t) must be well
separated from other length scales that may be present i
system. In most of the systems undergoing phase-orde
kinetics, the characteristic length scaleL(t) has a power-law
dependence on the timet elapsed since the quench,L(t)
;t1/z. The growth exponentz depends on whether or not th
order parameter is conserved. In the absence of shear
with a constant mobilityG, for nonconserved order param
eter systemsz52 and for conserved order parameter with
hydrodynamic effectsz53 ~for scalar fields! and 4~for vec-
tor fields!. The characteristic length scaleL(t) is normally
associated with the wave vectorkm at which the spherically
symmetric structure factorS(k,t) is maximum ~i.e., km
;L21).

When the phase-separating system is subjected to uni
shear@2#, the isotropy in the structure factor is broken as t
domains grow faster in the flow direction than in directio
perpendicular to the flow. This anisotropy is confirmed
simulation @3–6# and analytical@7#, numerical@8#, and ex-
perimental results@9–11#. We have previously shown ana
lytically that within the large-n limit @7#, the structure factor
exhibits multiscaling with characteristic lengthskmy

215kmz
21

;(t/ ln t)1/4 and kmx
21;(t5/ln t)1/4 in directions perpendicula

to the flow, and parallel to the flow, respectively. For t
scalar case~without hydrodynamic effects!, renormalization-
group arguments@6# predictkmy

21;t1/3 andkmx
21;t4/3, for the

‘‘viscous hydrodynamic’’ regime La¨uger et al. @11# found
experimentally kmy

21;t and kmx
21;t2. The ratio kmx /kmy

;1/t is consistent with analytical, numerical, simulation
and experimental results.

In the case of unsheared phase separation, there has
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much study of the effects of an order-parameter-depend
mobility @12–18#. It was suggested that a mobility of th
form G(f)512f2 is appropriate for deep quenches@12#
and to account for the effects of external fields such as g
ity @13#. Simulational calculations@14# performed on phase
separation with scalar order parameter and mobilityG(f)
512af2 show that fora51, z54 instead of 3, which is a
result for constant mobility. A crossover fromz54 to 3 was
found for the case wherea,1 ~with a.0) @14#. For an
n-vector order parameter, the simulation results@15# done
with G(fW )512afW 2/n for n52, 3, and 4 show a crossove
from z56 to z54 for a,1, while for a51, z56. Emmott
et al. @16,17# considered a more general expression for
mobility given by

G~fW !5G0~12fW 2/n!a, ~1!

whereaPR1. For scalar fields@16# in the Lifshitz-Slyozov
limit, they foundz531a, while for conserved vector fields
within the large-n limit @17# multiscaling was found with
two length scalest1/2(a12) and km

21;(t/ ln t)1/2(a12). A dif-
ferent form for the mobility,G(f)51/@11exp(af2bf2)#,
where botha andb are positive~with b.a), was used by
Ahluwalia @18# in simulating the Cahn-Hilliard model o
phase separation. The domain patterns were found to
similar to the ones observed in viscoelastic phase separa
It is clear that different forms of mobility can be used d
pending on the type of problem concerned.

Before we proceed, we make few comments on the ph
cal relevance of the parametera in Eq. ~1!. For scalar fields
~e.g., binary fluids!, it is well known that fora50 the bulk
diffusion is the dominant coarsening mechanism@1#. When
a.0, the bulk diffusion is suppressed since in the bu
phasef2→1 ~in dimensionless units! and the mobilityG
vanishes while at the interfacef2→0 andG is finite leading
to surface diffusion~i.e., diffusion along the interfaces!. We
note thata51 is relevant for deep quenches@12# as noted
before, and in simulation one can easily work at zero te
perature. For vector fields withn<d and constant mobility
(a50), there are stable topological defects~e.g., vortex
lines for n52 in three dimension! which play the same role
as the surfaces~i.e., domain walls! for n51. The coarsening
proceeds by a ‘‘straightening out’’~or a reduction in typical
247 ©2000 The American Physical Society
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248 PRE 61N. P. RAPAPA
radius of curvature! as sharp features are removed, or
disappearance of small domain bubbles or vortex loops.
point defects (n5d), the coarsening process occurs via t
mutual annihilation of defect-antidefect pairs. Forn.d,
there are no stable topological defects and the coarse
dynamics is of a different nature~though the growth expo
nents may be the same as forn<d). The analog between th
scalar fields and vector fields as far as the coarsening me
nism is concerned in the presence of the order-parame
dependent mobility is not complete~i.e., it is not clear what
are the coarsening mechanisms which correspond to su
and bulk diffusion!. It is, however, natural to try to genera
ize to the vector case@15,17#.

In this paper we are mainly concerned with the dynam
of the large-n conserved order parameter with the simpl
shear flow following a quench from the high-temperatu
phase to zero temperature, and the case with an or
parameter-dependent mobility given by Eq.~1!. We show
that in the late stage, the structure factor becomes anisotr
and shows multiscaling behavior @19# „i.e.,
S(k,t);@(LxLyLz)

w(kxLx ,kyLy ,kzLz#… with characteristic
length scales Lx;kmx

21;(t2a15/ln t)1/2(a12), Ly;kmy
21

;(t/ ln t)1/2(a12), and Lz;kmz
21;(t/ ln t)1/2(a12) extracted

from the maxima of the structure factor. In thekz50 plane,
there are two parallel ridges, whose height and length dep
on a. These parallel ridges have been observed in exp
ments @9# for scalar fields in the absence of shear witha
50. It is worth mentioning that multiscaling is believed
be an artifact of the large-n approximation as in the case o
constant mobility and zero shear@20#. For systems with finite
n, we expect scaling to be recovered asymptotically,
though multiscaling may be exhibited as a preasymptotic
fect @21#.

The paper is organized as follows: In the next secti
model equations which take into account both shear and n
constant mobility are introduced. In Sec. III, an exact so
tion for the structure factor is obtained in the scaling limit.
discussion of the results for specific values ofa ~i.e., a51
and 2! is presented in Sec. IV. Concluding remarks are giv
in Sec. V.

II. MODEL EQUATIONS

In order to study the phase-separating system, the C
Hilliard equation ~generalized ton-vector order paramete
fW ) is given by

] tfW 52“•$G~fW !“@2“

2fW 1fW 2~fW 2/n!fW #%. ~2!

We are interested in a system with uniform shear flow wh
has a velocity field of the formv5gyex , where g is the
constant shear rate andex is a unit vector in the flow direc-
tion. For an incompressible system in the presence of sh
the term (v•“)fW is added on the left-hand side of Eq.~2!,
leading to

] tfW 1gy ]xfW 52“•$G~fW !“@2“

2fW 1fW 2~fW 2/n!fW #%.
~3!
or
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In the limit n→`,fW 2/n is replaced by its average in th
usual way, and Eq.~3! reduces to a linear self-consiste
equation whose Fourier transform is given by

]fk

]t
2gkx

]fk

]ky
52k2a~ t !a@k22a~ t !#fk , ~4!

whereG0 has been absorbed into the time scale,f is ~any!
one component offW , anda(t)512^f2&. Equation~4! has
recently been solved numerically within a ‘‘self-consiste
one-loop’’ approximation for a scalar order parameter in t
dimensions by Gonnellaet al. @22#. We believe that the os
cillations ~whose amplitudes decrease quite rapidly asa in-
creases! found in @22# are slowly decaying preasymptoti
transients.

III. EXACT SOLUTION IN THE SCALING LIMIT

Equation~4! is a first-order linear partial differential equa
tion which can be easily solved by change of variabl
(kx ,ky ,t)→(kx ,s,t), with t5t and s5ky1akxt. With
this transformation the left-hand side of Eq.~4! becomes
]fk /]t, and straightforward integration gives~after trans-
forming back to the original variables! fk(t)
5fk(0)expf(k,t), where

f ~k,t !52~k21m2!2b0~ t !14gkxm~k21m2!b1~ t !

22g2kx
2~k213m2!b2~ t !14g3kx

3mb3~ t !

2g4kx
4b4~ t !1~k21m2!p0~ t !22gkxmp1~ t !

1g2kx
2p2~ t !, ~5!

with k25kx
21kz

2 , m5ky1gkxt, bm(t)5*0
t dt8 t8ma(t8)a,

pm(t)5*0
t dt8t8ma(t8)a11.

From dimensional analysis, it is easy to see that to lead
order in t, a(t);t21/(a12), Ly;Lz;t1/2(a12), and Lx
;t (2a15)/2(a12), with the dominant part of thekx depen-
dence coming from the shear terms. In fact, there are lo
rithmic corrections to these power-law relations, as we w
see. It is reasonable to make the ansatza(t);(ln t/t)1/(a12)

~this is true forg50 @17#! in the large-t limit. Then to lead-
ing order int, we have

bm~ t !5
2tmb0~ t !

ma12m12
,

pm~ t !5
tmp0~ t !

ma12m11
. ~6!

Substituting Eq.~6! into Eq. ~5! after making the following
change of variables,

gkx5A p0~ t !

t2b0~ t !
u, ky5Ap0~ t !

b0~ t !
v, kz5Ap0~ t !

b0~ t !
w,

~7!

the structure factorS(k,t)5^fk(t)f2k(t)& becomes

S~k,t !5D expS 2
p0

2

b0
F~u,v,w! D ,
~8!
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F~u,v,w!52
u4

5
A0~a!2u3vA1~a!22u2v2A2~a!

22uv3A3~a!2v41
8

15
u2A5~a!1

4

3
uvA4~a!

1v21w22w422v2w22
2

3
u2w2A2~a!

22uvw2A3~a!,

where contributions toF which vanish ast→` ~at fixed
u,v,w) have been dropped,D is the size of the initial fluc-
tuation,^f i(r ,0)f j (r 8,0)&5Dd i j d(r2r 8), and

A0552
40

a14
1

60

2a16
2

40

3a18
1

10

4a110
,

A1542
24

a14
1

24

2a16
2

8

3a18
,

A2532
12

a14
1

6

2a16
,

~9!

A3522
4

a14
,

A45
3

2
2

3

2a16
,

A55
15

8
2

30

8a124
1

15

16a140
,

with Am(a50)51. In order to find the exact form ofb0 and
p0 in the large-t limit, we consider the self-consistent equ
tion for a(t) given by

a~ t !512E d3k

~2p!3
S~k,t !

512
D

~2p!3gt
S p0

b0
D 3/2

3E du dv dw expS 2
p0

2

b0
F~u,v,w! D . ~10!

The above integral can easily be evaluated by the metho
steepest descent using the points of global maxima
F(u,v,w) providedp0

2/b0→` as t→` ~this is the case we
assumed before!, therefore Eq.~10! becomes

15
C1~a!D

gtp0
3/2

expS 2
p0

2

b0
Fm~a! D , ~11!

where C1(a) is a constant andFm(a) is the value at the
maxima @um(a),vm(a),wm(a)#. The assumption thata(t)
!1 for t@1 has also been used.

Therefore, to leading logarithmic accuracy, Eq.~11! leads
to
of
in

p0
2~ t !'

b0 ln t

2Fm
1

3b0 ln b0

8Fm
,

2p0

dp0

dt
'

db0

dt F ln t

2Fm
1

3 lnb0

8Fm
G . ~12!

Using Eqs. ~12! and the relationsdb0 /dt5aa, dp0 /dt
5aa11, we get

a~ t !'S ln b0

b0
D 1/2F ln t

8Fm ln b0
1

3

32Fm
G1/2

, ~13!

from which b0 ~sincedb0 /dt5aa) is found to be

b0~ t !'S a12

2
t D 2/(a12)S 2 ln t

a12 F a12

16Fm
1

3

32Fm
G D a/(a12)

,

~14!

from which,

p0
2~ t !

b0~ t !
'

ln t

2Fm
F11

3

2~a12!G ,
a~ t !'S 4

~a12!2

ln t

t D 1/(a12)F a12

16Fm
1

3

32Fm
G1/(a12)

.

~15!

The above results fora(t), b0(t), and p0(t) justify our
original ansatz. From Eq.~7! we can define the characterist
length scales in three directions:Lx5g(t2b0 /p0)1/2

;Y(a)g(t2a15/ln t)1/2(a12) and Ly5Lz5(b0 /p0)1/2

;Y(a)(t/ ln t)1/2(a12), by settingu5kxLx , v5kyLy , and
w5kzLz , where

Y21~a!5A2S 4

~a12!2 F a12

16Fm
1

3

32Fm
G D 1/2(a12)

.

~16!

Exact values forFm(a) and @um(a),vm(a),wm(a)# can be
found by specifying values ofa. For example, values fo
a51 and 2 are shown in Table I, while fora50, results
presented in@7# are recovered.

Using Eqs.~8!, ~11!, and~15!, it is easy to show that the
structure factor becomes

S~k,t !5const@ ln Vs#
3/2Vs

F(q)/Fm , ~17!

with scaled momentumq and ‘‘scale volume’’Vs given by

q5~kxLx ,kyLy ,kzLz!,
~18!

Vs5LxLyLz;gt (712a)/2(a12)/~ ln t !3/2(a12),

respectively. Equation~17! exhibits multiscaling behavior
~i.e., the power of the ‘‘scale volume’’ depends continuous
on the scaling variables!. We anticipate, however, that fo
finite n, standard scaling will be recovered and the lnt terms
~which appear in the characteristic length scales! will be ab-
sent as has been shown explicitly for the case with botha
andg50 @20#.
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TABLE I. Stationary points ofF(u,v,w): Max5maximum, Min5minimum, S5saddle point~2D!, Sn
5saddle point of typen ~the matrix of second derivatives hasn positive eigenvalues!, IS5‘‘inflection saddle
point’’ ~one positive, one zero, one negative eigenvalue!, IMax5‘‘inflection maximum’’ ~one zero, one
negative eigenvalue!. See also Fig. 1. for 2D results.

Position (u,v,w) Number F Value Type~3D! Type ~2D!

a51
(0,0,0) 1 0 0 Min Min
6(A55/6/3,0,0) 2 55/168 0.32738 IS IMax

6@(332A165)/18A2,21/A2,0# 2 31/1682A55/3/28 0.03160 S2 S

6@(331A165)/18A2,21/A2,0# 2 31/1681A55/3/28 0.33744 S1 Max

6(0,0,1/A2) 2 1/4 0.25 S1

6(A22/3,2A11/2/4,6A5/2/4) 4 39/112 0.34821 Max

a52
(0,0,0) 1 0 0 Min Min
6(A7/8,0,0) 2 14/45 0.31111 IS IMax

6@(72A7)/4A2,21/A2,0# 2 31/1802A7/18 0.02524 S2 S

6@(71A7)/4A2,21/A2,0# 2 31/1801A7/18 0.31921 S1 Max

6(0,0,1/A2) 2 1/4 0.25 S1

6(A35/4,2A7/5/2,6A3/5/2) 4 59/180 0.32778 Max
ir
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IV. RESULTS

Both the positions of the stationary points ofF(u,v,w)
and its value depend ona @apart from points (0,0,0) and
6(0,0,1/A2)#, see Table I. The global picture ofS(k,t) is
determined byF(u,v,w) @i.e., the stationary points and the
type together with values ofF(u,v,w) at stationary points#
because lnS(k,t)5@F(u,v,w)/Fm# ln Vs ~plus k-independent
terms!. The features ofF(u,v,w) for a51 and 2 are sum-
marized in Table I and Table II.

The parallel ridges found in Fig. 1 are similar to on
found in experiments@9#. The global maxima are connecte
by almost straight ridges to the ‘‘inflection maxima.’’ As th
value ofa increases, the height of each ridge decreases
wards the limiting valueF51/4 ~and also the length of eac
ridge increases! while the line connecting the two sadd
points and the minimum approaches the lineu52v with
F50. In the (kx ,ky) plane, the ridges become narrowe
higher, and closer together as a function ofk with increasing

TABLE II. Stationary points ofF(u,0,w): Max5maximum,
Min5minimum,S5 saddle point. See also Fig. 2.

Position (u,w) No. F Value Type

a51

(0,0) 1 0 0 Min
6(A55/6/3,0) 2 55/168 0.32738 S

6(0,1/A2) 2 1/4 0.25 S

6(A110/129,6A5/43) 4 100/301 0.33223 Max

a52
(0,0) 1 0 0 Min
6(A7/2/2,0) 2 14/45 0.31111 S

6(0,1/A2) 2 1/4 0.25 S

6(A35/3/4,61/3) 4 17/54 0.31481 Max
o-

time t. The angleu between the ridges and the shear dire
tion (ky direction in this case! is a good measure of theor
against experiments because the depth of the tempera
quench is unimportant as far as the time dependence is
cerned. We find

tan~u!5
C2~a!

gt
, ~19!

where C2(a) is a constant which depends ona, e.g.,
C2(0)52(121/A6),C2(2)5(72A7)/4. Equation~19! im-
plies that in the (kx ,ky) plane, the ridges move closer to th
shear direction as time increases. This behavior is found b
in simulations@6# and experiments@11#.

In the (u,w) plane, there are four maxima, four sadd
points, and the global minimum at the origin. These a
shown in Table II~for a51,2), and they can easily be see
in Fig. 2 for a51. Whena increases, the peaks and th
higher saddle point@i.e., saddle point with higher value o
F(u,0,w)# reduce towards the limiting valueF51/4 @i.e.,
Fm(u,0,w) is deformed towards a ring of radius 1/A2#. For
each value ofa, the structure factor pattern in the (kx ,kz)
plane will decrease faster in the flow~i.e., kx) direction as a
function of t, resulting in an elliptical shape with the majo

FIG. 1. The graph ofF(u,v,0) for a51. Values forF(u,v,0)
,20.1 are not shown.
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axis along thekz direction. This elliptical shape has bee
observed in experiments@11# for scalar fields while the four
peaks were not observed.

The excess viscosityDh, and normal stressesDN1 ,DN2
derived by Onuki@2# can be evaluated in the asymptot
limit:

Dh52~1/g!E d3k

~2p3!
kxkyS~k,t !

;
1

g2 S ln t

ta13D 1/(a12)

,

DN15E d3k

~2p3!
~ky

22kx
2!S~k,t !

;S ln t

t D 1/(a12)

, ~20!

DN25E d3k

~2p3!
~ky

22kz
2!S~k,t !

;S ln t

t D 1/(a12)

.

Numerical calculations@22# show that both excess viscosi
Dh(t) and the normal stressDN1(t) reach a peak before th
asymptotic scaling result. It is not possible to realize t
effect as our calculations are strictly valid in the asympto
regime.

In analogy to 2D numerical calculations presented in@22#,
it is easy to repeat the calculation for 2D in the shear-fl
(kx ,ky) plane. The self-consistent equation fora(t) leads to
@with C3(a) constant#

FIG. 2. The graph of F(u,0,w) for a51. Values for
F(u,0,w),20.1 are not shown.
s
c

15
C3~a!D

gtp0
expS 2

p0
2

b0
Fm

2D~a! D , ~21!

from which to leading order int,

b0~ t !'S a12

2
t D 2/(21a)S 2 ln t

a12 F a12

16Fm
2D

1
1

16Fm
2DG D a/(a12)

,

p0
2~ t !

b0~ t !
'

ln t

2Fm
2D F11

1

~a12!G , ~22!

a~ t !'S 4

~a12!2

ln t

t D 1/(21a)F a12

16Fm
2D

1
1

16Fm
2DG 1/(a12)

.

Using both Eqs.~21! and~22!, the structure factor can b

written down asS(k,t)5const(lnAs)As
F2D(q)/Fm

2D
, whereAs

5LxLy is the ‘‘scale area’’ andq5(kxLx ,kyLy) with Lx
;g(t512a/ ln t)1/2(a12), Ly;(t/ ln t)1/2(a12), and F2D

5F(u,v,0). Therefore, the structure factor pattern is simi
to Fig. 1. The oscillations between the peaks@22# which
terminate the two parallel ridges, we believe, are suppres
in the long time regime~i.e., they are the preasymptotic de
caying transients!.

V. SUMMARY AND REMARKS

We have analytically studied the effect of both shear a
order-parameter-dependent mobility on phase separa
within the large-n limit. Shear introduces anisotropy in th
structure factor pattern because of different growth rates
the flow direction and directions perpendicular to flow.
fixed timet andk, a distorts the shape of the structure fact
S(k,t) @this is evident in theF(u,v,0) andF(u,0,w) pat-
terns#. Similar to all studies previously done, the orde
parameter-dependent mobility slows down the rate of co
ening @i.e., Li(a50).Li(aÞ0), where i 5x,y,z#. We
believe the multiscaling found here to be the result of
large-n approximation, and that for any finiten, standard
scaling will be obtained with the same characteristic len
scales but without the lnt terms, Lx;t (2a15)/2(a12), Ly
;t1/2(a12), and Lz;t1/2(a12). The excess viscosityDh(t)
and the normal stresses@i.e., DN1(t) and DN2(t)# relax to
zero as (lnt/ta13)1/(a12) and (lnt/t1/(a12)), respectively, in
the scaling limit. Again we expect logarithmic terms to b
absent for finiten.
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