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Effect of shear on phase-ordering dynamics with order-parameter-dependent mobility:
The largen limit
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The effect of shear on the ordering kinetics of a conserved order-parameter systed(m)ittymmetry and
order-parameter-dependent mobillfﬂq?)oc(l— 2/n)“ is studied analytically within the largedimit. In the
late stage, the structure factor becomes anisotropic and exhibits multiscaling behavior with characteristic length
scales (?**5/In t)/2@*2) in the flow direction andt{In t)*2“*2) in directions perpendicular to the flow. As in
the a=0 case, the structure factor in the shear-flow plane has two parallel ridges.

PACS numbgs): 64.60.Cn, 82.20.Mj, 05.70.Ln

[. INTRODUCTION much study of the effects of an order-parameter-dependent
mobility [12—-18. It was suggested that a mobility of the
The dynamics of the ordered phases when a system form I'(¢)=1—¢? is appropriate for deep quenchik]
quenched from the high-temperature phase into the lowand to account for the effects of external fields such as grav-
temperature region of two or more ordered phases has bedly [13]. Simulational calculation§14] performed on phase
of intense interesf1]. It is now well established that in the Separation with scalar order parameter and mobliiy)
late stage, both the equal time pair correlation function=1—a$* show that fora=1,z=4 instead of 3, which is a
C(r,t) and the structure factd(k,t) obtained by the Fou- result for constant mobility. A crossover from=4 to 3 was
rier transform ofC(r,t) obey standard scaling. By standard found for the case whera<1 (with a>0) [14]. For an
scaling it is meant tha€(r,t) andS(k,t) can be written as N-vector order parameter, the simulation res(tts] done
f(r/L) andL%(KkL), respectively, wheré(r/L) andg(kL)  with I'(¢)=1—ad¢?/n for n=2, 3, and 4 show a crossover
are the scaling functions andt) is the characteristic length from z=6 toz=4 for a<1, while fora=1,z=6. Emmott
scale in the system. For scaling to holdt) must be well et al.[16,17 considered a more general expression for the
separated from other length scales that may be present in teobility given by
system. In most of the systems undergoing phase-ordering
kinetics, the characteristic length scal@) has a power-law F(gZ):FO(l— 552/n)a, (1)
dependence on the timeelapsed since the quench(t)
~t'2. The growth exponent depends on whether or not the wherea e %" . For scalar field§16] in the Lifshitz-Slyozov
order parameter is conserved. In the absence of shear, btit, they foundz=3+ «, while for conserved vector fields
with a constant mobility”, for nonconserved order param- within the largen limit [17] multiscaling was found with
eter systemg=2 and for conserved order parameter with noyyo length scale$”/2“*2) and k1~ (t/Int)2@*2) - A dif-
hydrodynamic effectg=3 (for scalar fieldsand 4(for vec-  ferent form for the mobility,l'($) =11+ explad—B4?)],
tor fields. The characteristic length scalgt) is normally  \yhere botha and 8 are positive(with 8> a), was used by
associated with the wave vectiy, at which the spherically  Ahluwalia [18] in simulating the Cahn-Hilliard model of
symmetric structure factoS(k,t) is maximum (i.e,, kn  phase separation. The domain patterns were found to be
~L79). similar to the ones observed in viscoelastic phase separation.
When the phase-separating system is subjected to uniforg s clear that different forms of mobility can be used de-
shear{2], the isotropy in the structure factor is broken as thepending on the type of problem concerned.
domains grow faster in the flow direction than in directions Before we proceed, we make few comments on the phys|_
perpendicular to the flow. This anisotropy is confirmed byca| relevance of the parameterin Eq. (1). For scalar fields
simulation[3—6] and analytica[7], numerical[8], and ex-  (e.g., binary fluids it is well known that fora=0 the bulk
perimental result§9—-11]. We have previously shown ana- giffusion is the dominant coarsening mechanigkh When
lytically that within the largen limit [7], the structure factor 4>0, the bulk diffusion is suppressed since in the bulk
exhibits multiscaling with characteristic lengths,;=K.;  phase$?—1 (in dimensionless uniisand the mobilityT
~(t/InY)* and ky,x~ (t%Int)* in directions perpendicular vanishes while at the interfags*— 0 andT is finite leading
to the flow, and parallel to the flow, respectively. For theto surface diffusior(i.e., diffusion along the interfaceswe
scalar caséwithout hydrodynamic effecjsrenormalization- note thata=1 is relevant for deep quenchgk2] as noted
group argumentf6] predictk,,; ~t*3 andk,;~t*", for the  before, and in simulation one can easily work at zero tem-
“viscous hydrodynamic” regime Lager et al. [11] found  perature. For vector fields with=d and constant mobility
experimentally k;§~t and k,,I~t?. The ratio Kmx/Kmy ~ (@=0), there are stable topological defedtsg., vortex
~ 1k is consistent with analytical, numerical, simulational, lines forn=2 in three dimensionwhich play the same role
and experimental results. as the surfaceg.e., domain wallsfor n=1. The coarsening
In the case of unsheared phase separation, there has bgaoceeds by a “straightening outldr a reduction in typical
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radius of curvatureas sharp _features are removed, or by |n the limit n—>w,$2/n is replaced by its average in the
disappearance of small domain bubbles or vortex loops. FQiisyal way, and Eq(3) reduces to a linear self-consistent

point defects (=d), the coarsening process occurs via theequation whose Fourier transform is given by

mutual annihilation of defect-antidefect pairs. Ford,

there are no stable topological defects and the coarsening Iy dpy N

dynamics is of a different naturghough the growth expo- A e —k?a(t)*[k*—a(t)] ¢y, 4
nents may be the same as foed). The analog between the Y

scalar fields and vector fields as far as the coarsening mechaherel’ has been absorbed into the time scales (any)
nism is concerned in the presence of the order-parametegne component o, anda(t)=1-(¢?). Equation(4) has
dependent mobility is not completee., it is not clear what recently been solved numerically within a “self-consistent
are the coarsening mechanisms which correspond to surfagge-loop” approximation for a scalar order parameter in two
and bulk diffusion. It is, however, natural to try to general- dimensions by Gonnellet al. [22]. We believe that the os-
ize to the vector casgl5,17. cillations (whose amplitudes decrease quite rapidlycais-

In this paper we are mainly concerned with the dynamicsreases found in [22] are slowly decaying preasymptotic
of the largen conserved order parameter with the simplestiransients.

shear flow following a quench from the high-temperature

phase to zero temperature, an.d the case with an order- |, EXACT SOLUTION IN THE SCALING LIMIT
parameter-dependent mobility given by EHG). We show

that in the late stage, the structure factor becomes anisotropic Equation(4) is a first-order linear partial differential equa-
and shows  multiscaling  behavior [19] (i.e., tion which can be easily solved by change of variables:
S(k,t) ~[(LyLyL )¢t bykebz]) - with  characteristic  (kx.Ky,t)—(Ky,0,7), with t=7 and o=Kk,+ ak,r. With
length  scales L~kpi~(t2**5/Int)¥2e+2) |~k 1 this transformation the left-hand side of E@) becomes
~(t/Int)Y2@*2)  and LZ~k,;§~(t/Int)1’2(“*2) extracted a¢k/.¢97, and straightforward int'egration gi\_/eéafter trans-
from the maxima of the structure factor. In tkg=0 plane, forming back to the original variables ¢(t)
there are two parallel ridges, whose height and length depend ¢«(0)expf(k,t), where

on «. These parallel ridges have been observed in experi- 2, 22 2 o
ments[9] for scalar fields in the absence of shear with Flk, )= = (k™ %) 7bo(t) T4 vk (k™+ 1) Da (1)

=0. Itis .worth mentioning that multi;caling_is believed to —2y2k§(;<2+ 3,u2)b2(t)+4y3k§,ub3(t)

be an artifact of the large-approximation as in the case of

constant mobility and zero shef@0]. For systems with finite — ¥*Kba(t) + (k% + w?) po(t) — 2ykeups (1)

n, we expect scaling to be recovered asymptotically, al- 012

though multiscaling may be exhibited as a preasymptotic ef- +y7KPa(b), ®)
fect [21].

H 2_1,2 2 _ _rt 7 4+rm AY?
The paper is organized as follows: In the next section,WIth K _th,Jr,lfnZ’ 'fL_+kly+ vk, r(t) = Jodt" t"a(t'),
(t)=fidt't'ma(t’ )+ L,

model equations which take into account both shear and norm . . o :

constant mobility are introduced. In Sec. Ill, an exact solu- 'om dimensional ia/peilyz/)&s, itis easyl'/[?( ses that to leading
! H —t— U 1 - a

tion for the structure factor is obtained in the scaling limit. A Or‘j(§£+'5?/2£;+%(t) 1 , Ly~L~t , and L,

discussion of the results for specific valuescofi.e., a=1 & , with the dominant part of thé, depen-

and 2 is presented in Sec. IV. Concluding remarks are givend_erw(.e comlng.from the shear terms. In fact_, there are Ioga—
in Sec. V. rithmic corrections to these power-law relations, as we will

see. It is reasonable to make the anst) ~ (In t/t)*/(«+2)
(this is true fory=0 [17]) in the larget limit. Then to lead-

Il. MODEL EQUATIONS ing order int, we have
In order to study the phase-separating system, the Cahn- 2tMbg(t)
I:|i||iard equation (generalized ton-vector order parameter bm(t):—ma+ om+2°
¢) is given by
t™po(t)
Pl = T 2me 1 ©

==V AT(HV[-V?+ = (M} ()
Substituting Eq(6) into Eq. (5) after making the following
We are interested in a system with uniform shear flow whichChange of variables,

has a velocity field of the fornv=yye,, where y is the
constant shear rate amg is a unit vector in the flow direc- YK, = / Po(t) U, k= /pO(t)V’ Ko= /pO(t)W’
tion. For an incompressible system in the presence of shear,* t%by(t) Y bo(t) z bo(t)

the term ¢- V)¢ is added on the left-hand side of E@), (7)
leading to the structure factoB(k,t) = (¢, (t) ¢_(t)) becomes

2

dp+ vy o=~V AT (H)V[-V?¢p+ $—(<Z>2/n)<i>]}-(3) S(k,t)=A exp( Z%F(u,v,w)
0

8
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ut bolnt 3bglnb
= — — 3 _ 2,2 2 ~ 0 0 0
F(u,v,w) £ Ao(@) ~UNVA (@)~ 2u*v*Ag(a) po(t) oF . + 8F.
20V Ag(a) VAU Ag( @)+ 2 UvAL(a) op 3P0 dboj Int  31nbo 12
15 3 Po"dt ~dt |2F, " 8F, | (12
2 . .
+v2+w2—w4—2v2w2—§u2w2A2(a) Using Egs.(12) and the relationsdby/dt=a%, dpy/dt
=a*"! we get
_ 2
2uvwAsz(a), Inbo\ 2 Int 3 112
I . . , a(t)~ + : (13)
where contributions td= which vanish ast—o (at fixed bo 8Fminby  32F,
u,v,w) have been dropped is the size of the initial fluc- ] . .
tuation, ( ¢(r,0)¢;(r',0))=A 8, 5(r—r"), and from which b, (sincedb,/dt=a®) is found to be
40 60 40 10 ) (t) a+2t 2/(a+2) 2Intla+2 . 3 })a/(aﬁi)
Ao=o" 74" 2446 3a+8  datl0’ ° 2 at2|16Fy  32Fn ’
(14)
24 24 8 :
—4— _ from which,
M= T 2076 3ats’
p3(t) Int . 3
12 6 ~ ,
P S bo(t) 2F 2(a+2)
Ae=3= 4" 246 ;
9 4 Int\Y“"Pat2 3 |Mar2)
4 a(t)~ — —_—
A3=2—m, ® (a+2)2 t 16F, 32Fm}
(15
A :§_i The above results foa(t), bg(t), and py(t) justify our
472 2a+6’ original ansatz. From Ed7) we can define the characteristic
length scales in three directionsL,= y(t?by/pg)*?
15 30 15 ~Y (@) y(t***3Int)2@ 2 and  L,=L,=(bo/po)*?
As= 8 " 8at24 164140’ ~Y (a)(t/Int)2*2), by settingu=k,L,, v=kL,, and
w=Kk,L,, where
with Ap,(e¢=0)=1. In order to find the exact form df, and et 2
po in the larget limit, we consider the self-consistent equa- yo1 2 4 a+2 3 (@+2)
tion for a(t) given by (@)= (a+2)? 16k, 32,
(16)

d3k
ah=1 J(ZW)as(k't) Exact values fofF () and[ug(a),ve(a),Wy(a)] can be
found by specifying values ofr. For example, values for
A Po) 2 a=1 and 2 are shown in Table |, while far=0, results
- (27t (b_o) presented in7] are recovered.
Using Egs.(8), (11), and(15), it is easy to show that the

structure factor becomes

2
X J du dv dwexr{ Z?F(u,v,w)
0

. (10
S(k,t)=consfIn Vs]3’zvz(q)/Fm, 17

The above integral can easily be evaluated by the method of . .
steepest descent using the points of global maxima iNVith scaled momentum and “scale volume™V, given by

F(u,v,w) providedpé/bo—m ast—o (this is the case we — (KoL oLy KoL)
assumed befojetherefore Eq(10) becomes q XExamy Ty Tz
2 VS: LXLyLZN ,yt(7+2a)/2(a+2)/(|nt)3/2(a+2),
exr{ 2& Fm( a)) , (11
bo

(18)

ytpd? respectively. Equatior(17) exhibits multiscaling behavior
(i.e., the power of the “scale volume” depends continuously
where C;(«) is a constant andF,(«) is the value at the on the scaling variablesWe anticipate, however, that for
maximalumn(a),vm(a@),Wn(a)]. The assumption thai(t) finite n, standard scaling will be recovered and thé terms
<1 for t>1 has also been used. (which appear in the characteristic length sceriedl be ab-
Therefore, to leading logarithmic accuracy, Efl) leads  sent as has been shown explicitly for the case with koth

to and y=0 [20].
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TABLE I. Stationary points of~(u,v,w): Max=maximum, Mir=minimum, S=saddle point{2D), Sn
=saddle point of typa (the matrix of second derivatives hagpositive eigenvalugs|S="inflection saddle
point” (one positive, one zero, one negative eigenvallidax="inflection maximum” (one zero, one

negative eigenvalyeSee also Fig. 1. for 2D results.

Position (,v,w) Number F Value Type(3D)  Type (2D)
a=1
(0,0,0) 1 0 0 Min Min
+(/55/6/3,0,0) 2 55/168 0.32738 IS IMax
+[(33-/165)/18/2,— 1/4/2,0] 2 31/168- \/55/3/28 0.03160 S2 S
+[(33+/165)/18/2,— 1/y/2,0] 2 31/168+ \/55/3/28 0.33744 S1 Max
+(0,0,1A/2) 2 1/4 0.25 S1
+ (V223 \11/2/4+ \[512/4) 4 39/112 0.34821 Max
a=2
(0,0,0) 1 0 0 Min Min
+(/7/8,0,0) 2 14/45 0.31111 IS IMax
=[(7T—T7)I4/2,—11\/2,0] 2 31/180-7/18  0.02524 2 S
=[(7+7)42,— 142,0] 2 31/180+7/18  0.31921 s1 Max
+(0,0,1A2) 2 1/4 0.25 S1
+(\/35/4,~ \7/5/2 % \[3/5/2) 4 59/180 0.32778 Max

IV. RESULTS

Both the positions of the stationary points Bfu,v,w)
and its value depend oa [apart from points (0,0,0) and
+(0,0,1A/2)], see Table I. The global picture &(k,t) is
determined by~ (u,v,w) [i.e., the stationary points and their
type together with values df(u,v,w) at stationary points
because 8(k,t) =[F(u,v,w)/F,]In Vs (plusk-independent
termg. The features of(u,v,w) for «=1 and 2 are sum-
marized in Table | and Table II.

The parallel ridges found in Fig. 1 are similar to ones
found in experiment$§9]. The global maxima are connected
by almost straight ridges to the “inflection maxima.” As the

value of @ increases, the height of each ridge decreases td2/i€S that in the K,
wards the limiting valud== 1/4 (and also the length of eac

ridge increaseswhile the line connecting the two saddle
points and the minimum approaches the line —v with
F=0. In the K, ky) plane, the ridges become narrower,
higher, and closer together as a functiorkafith increasing

TABLE Il. Stationary points ofF(u,0w): Max=maximum,
Min=minimum, S= saddle point. See also Fig. 2.

time t. The angled between the ridges and the shear direc-
tion (k, direction in this caseis a good measure of theory
against experiments because the depth of the temperature
quench is unimportant as far as the time dependence is con-
cerned. We find

Cay(a)
o

tan 0) = (19

where C,(a) is a constant which depends om, e.g.,
C,(0)=2(1—1/\/6),C,(2)=(7—\7)/4. Equation(19) im-
ky) plane, the ridges move closer to the

h shear direction as time increases. This behavior is found both

in simulations[6] and experimentf11].

In the (u,w) plane, there are four maxima, four saddle
points, and the global minimum at the origin. These are
shown in Table ll(for «=1,2), and they can easily be seen
in Fig. 2 for a=1. When« increases, the peaks and the
higher saddle poinfi.e., saddle point with higher value of
F(u,0w)] reduce towards the limiting valuE=1/4 [i.e.,
F.(u,0w) is deformed towards a ring of radius\®]. For

Position {,w) No. F Value Type each value ofw, the structure factor pattern in thé,(k,)
plane will decrease faster in the flaive., k,) direction as a

a=1 function oft, resulting in an elliptical shape with the major

(0,0 1 0 0 Min

+(/55/6/3,0) 2 55/168 0.32738 S 0.3} -2

+(0,14/2) 2 1/4 0.25 S ' e

= (VI10/129+\5/43) 4  100/301 0.33223 Max g, O'i
a=2 0

(0,0 1 0 0 Min o

+(\712/2,0) 2 14/45 031111 S -2 0 2

+(0,14/2) 2 1/4 0.25 S

+(/35/3/4+1/3) 4 17/54 0.31481 Max FIG. 1. The graph of(u,v,0) for a=1. Values forF(u,v,0)

< —0.1 are not shown.
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F(u,w)

FIG. 2. The graph ofF(u,0w) for a=1.
F(u,0w)<—0.1 are not shown.

Values for

axis along thek, direction. This elliptical shape has been
observed in experimenfd 1] for scalar fields while the four
peaks were not observed.

The excess viscosit », and normal stressesN;,AN,
derived by Onuki[2] can be evaluated in the asymptotic
limit:
d3k

A’)?: —(1/’)/)j (ZT:)’)kxkyS(k,t)

1/ Int
- ? ta+3

AN—f d3k
) 2n

Int\ Ya+2)
SR 20

d3k
ANZZ f
(2

77_3

Int\ Ya+2)
e

) U(a+2)

(ks =k S(k,1)

)w%«bakw
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Cs(a)A P5
_ Mo —2p
1 ~ e exp<2b0|:m(a)), (21)
from which to leading order i,
oot at2 22+ a) [ 2 nt at2 1 )“"“*2)
0 Il B
2 a+2|16F2P  16F2P
p5(t)  Int 1
~—=|1+ , (22)
bo(t)  2F2! (at+2)
" 4 Int 1/(2+ @) i D . 1 U(a+2)
a ~| — —— —_— —_—
(a+2)? t 16F2P  16F2P

Using both Eqgs(21) and(22), the structure factor can be

written down asS(k, t) = const(INAJAF @R where A,
=L,L, is the “scale area” andy= (kL k,L,) with L,

N ,y(tg+ 2a/|n t)1/2(a+ 2), Ly~(t/In t)1/2(a+2)' and F2D
=F(u,v,0). Therefore, the structure factor pattern is similar
to Fig. 1. The oscillations between the pedR2] which
terminate the two parallel ridges, we believe, are suppressed
in the long time regiméi.e., they are the preasymptotic de-
caying transients

V. SUMMARY AND REMARKS

We have analytically studied the effect of both shear and
order-parameter-dependent mobility on phase separation
within the largen limit. Shear introduces anisotropy in the
structure factor pattern because of different growth rates in
the flow direction and directions perpendicular to flow. At
fixed timet andk, « distorts the shape of the structure factor
S(k,t) [this is evident in the~(u,v,0) andF(u,0w) pat-
terng. Similar to all studies previously done, the order-
parameter-dependent mobility slows down the rate of coars-
ening [i.e., Li(a=0)>L;(a¢#0), where i=x,y,z]. We
believe the multiscaling found here to be the result of the
largen approximation, and that for any finite, standard
scaling will be obtained with the same characteristic length
scales but without the Interms, L,~t(Z**3)/2@+2) |
~tY2@*2) gnd L,~tY2@*2) The excess viscosity 7(t)
and the normal stressése., AN;(t) and AN,(t)] relax to

Numerical calculation$22] show that both excess viscosity zero as (I/t*"3)(«*2) and (Int/t¥(«*2)), respectively, in

A n(t) and the normal stressN,(t) reach a peak before the the scaling limit. Again we expect logarithmic terms to be
asymptotic scaling result. It is not possible to realize thisabsent for finiten.

effect as our calculations are strictly valid in the asymptotic

regime.
In analogy to 2D numerical calculations presentefliz,
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